Strong coupling of a spin ensemble to a superconducting resonator.
نویسندگان
چکیده
We report the realization of a quantum circuit in which an ensemble of electronic spins is coupled to a frequency tunable superconducting resonator. The spins are nitrogen-vacancy centers in a diamond crystal. The achievement of strong coupling is manifested by the appearance of a vacuum Rabi splitting in the transmission spectrum of the resonator when its frequency is tuned through the nitrogen-vacancy center electron spin resonance.
منابع مشابه
Probing dynamics of an electron-spin ensemble via a superconducting resonator.
We study spin relaxation and diffusion in an electron-spin ensemble of nitrogen impurities in diamond at low temperature (0.25-1.2 K) and polarizing magnetic field (80-300 mT). Measurements exploit field-controlled coupling of the ensemble to two modes of a transmission-line resonator. The observed temperature-independent spin relaxation time indicates that spin outdiffusion across the mode vol...
متن کاملHybrid quantum circuit with a superconducting qubit coupled to a spin ensemble.
We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare a superposition o...
متن کاملProposal for a coherent quantum memory for propagating microwave photons
We describe a multi-mode quantum memory for propagating microwave photons that combines a solid-state spin ensemble resonantly coupled to a frequency tunable single-mode microwave cavity. We first show that high efficiency mapping of the quantum state transported by a free photon to the spin ensemble is possible both for strong and weak coupling between the cavity mode and the spin ensemble. We...
متن کاملA superconducting resonator designed for coupling to spin based qubits in quantum dots
We present the implementation of a system for the quantum state transfer between electron spin and photons exploiting the coupling of an InAs self-assembled quantum dot to a superconducting resonator cavity.
متن کاملStrong magnetic coupling of an ultracold gas to a superconducting waveguide cavity.
Placing an ensemble of 10;{6} ultracold atoms in the near field of a superconducting coplanar waveguide resonator with a quality factor Q approximately 10;{6}, one can achieve strong coupling between a single microwave photon in the coplanar waveguide resonator and a collective hyperfine qubit state in the ensemble with g_{eff}/2pi approximately 40 kHz larger than the cavity linewidth of kappa/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 105 14 شماره
صفحات -
تاریخ انتشار 2010